banner
Home / News / Antibiotic
News

Antibiotic

Nov 01, 2023Nov 01, 2023

Nature Reviews Microbiology (2023)Cite this article

81 Accesses

74 Altmetric

Metrics details

Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient’s resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient’s microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient’s microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.

This is a preview of subscription content, access via your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Browne, A. J. et al. Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. Lancet Planet. Health 5, e893–e904 (2021).

Article PubMed PubMed Central Google Scholar

Stewardson, A. J., Huttner, B. & Harbarth, S. At least it won’t hurt: the personal risks of antibiotic exposure. Curr. Opin. Pharmacol. 11, 446–452 (2011).

Article CAS PubMed Google Scholar

Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

Article CAS PubMed PubMed Central Google Scholar

Hogenauer, C., Hammer, H. F., Krejs, G. J. & Reisinger, E. C. Mechanisms and management of antibiotic‐associated diarrhea. Clin. Infect. Dis. 27, 702–710 (1998).

Article CAS PubMed Google Scholar

McFarland, L. V. Epidemiology, risk factors and treatments for antibiotic-associated diarrhea. Dig. Dis. Basel Switz. 16, 292–307 (1998).

Article CAS Google Scholar

Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00833-7 (2022). A comprehensive review on the mechanisms and regulation of colonization resistance.

Article PubMed Google Scholar

Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

Article PubMed PubMed Central Google Scholar

Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

Article PubMed PubMed Central Google Scholar

Wypych, T. P. & Marsland, B. J. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 39, 697–711 (2018).

Article CAS PubMed Google Scholar

Yuan, J. et al. Long-term use of antibiotics and risk of type 2 diabetes in women: a prospective cohort study. Int. J. Epidemiol. 49, 1572–1581 (2020).

Article PubMed PubMed Central Google Scholar

Park, S. J. et al. Association between antibiotics use and diabetes incidence in a nationally representative retrospective cohort among Koreans. Sci. Rep. 11, 21681 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

Article CAS PubMed PubMed Central Google Scholar

Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

Article CAS PubMed Google Scholar

Trasande, L. et al. Infant antibiotic exposures and early-life body mass. Int. J. Obes. 37, 16–23 (2013).

Article CAS Google Scholar

Teng, C., Reveles, K. R., Obodozie-Ofoegbu, O. O. & Frei, C. R. Clostridium difficile infection risk with important antibiotic classes: an analysis of the FDA adverse event reporting system. Int. J. Med. Sci. 16, 630–635 (2019).

Article CAS PubMed PubMed Central Google Scholar

Högenauer, C. et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N. Engl. J. Med. 355, 2418–2426 (2006).

Article PubMed Google Scholar

Shukla, A. & Sobel, J. D. Vulvovaginitis caused by Candida species following antibiotic exposure. Curr. Infect. Dis. Rep. 21, 44 (2019).

Article PubMed Google Scholar

Ben-Ami, R. et al. Antibiotic exposure as a risk factor for fluconazole-resistant Candida bloodstream infection. Antimicrob. Agents Chemother. 56, 2518–2523 (2012).

Article CAS PubMed PubMed Central Google Scholar

Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

Article CAS PubMed PubMed Central Google Scholar

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2014).

Article PubMed Google Scholar

Bush, K. et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 9, 894–896 (2011).

Article CAS PubMed PubMed Central Google Scholar

Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016). This longitudinal study of the infant gut microbiome observed transient blooms of specific species and resistance levels during antibiotic treatment.

Article PubMed PubMed Central Google Scholar

Stecher, B., Maier, L. & Hardt, W.-D. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 11, 277–284 (2013).

Article CAS PubMed Google Scholar

Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).

Article CAS PubMed PubMed Central Google Scholar

Shen, Z. et al. Emerging carriage of NDM-5 and MCR-1 in Escherichia coli from healthy people in multiple regions in China: a cross sectional observational study. eClinicalMedicine 6, 11–20 (2018).

Article PubMed PubMed Central Google Scholar

van Hattem, J. M. et al. Prolonged carriage and potential onward transmission of carbapenemase-producing Enterobacteriaceae in Dutch travelers. Future Microbiol. 11, 857–864 (2016).

Article PubMed Google Scholar

Hu, Y. et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 4, 2151 (2013).

Article PubMed Google Scholar

Group, B. M. J. P. Superinfections during antibiotic treatment. Br. Med. J. 1, 537–538 (1952).

Article Google Scholar

Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).

Article CAS PubMed PubMed Central Google Scholar

Sullivan, Å. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 1, 101–114 (2001). A review of the drug-specific effects of antibiotic on the microbiota, including extra-intestinal microbiota sites.

Article CAS PubMed Google Scholar

Yang, L. et al. The varying effects of antibiotics on gut microbiota. AMB Express 11, 116 (2021).

Article CAS PubMed PubMed Central Google Scholar

Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021). This study comprehensively screened gut commensals to identify drug combinations active against pathogens but that minimize collateral damage against other species.

Article CAS PubMed PubMed Central Google Scholar

Kelly, S. A., Rodgers, A. M., O’Brien, S. C., Donnelly, R. F. & Gilmore, B. F. Gut check time: antibiotic delivery strategies to reduce antimicrobial resistance. Trends Biotechnol. 38, 447–462 (2020).

Article CAS PubMed Google Scholar

Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011). This study highlights the differences between individuals in the microbiota response and recovery to antibiotics.

Article CAS PubMed Google Scholar

Jeffery, I. B., Lynch, D. B. & O’Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182 (2016).

Article CAS PubMed Google Scholar

Zimmermann, M., Patil, K. R., Typas, A. & Maier, L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Mol. Syst. Biol. 17, e10116 (2021).

Article CAS PubMed PubMed Central Google Scholar

Gjonbalaj, M. et al. Antibiotic degradation by commensal microbes shields pathogens. Infect. Immun. 88, e00012–e00020 (2020).

Article PubMed PubMed Central Google Scholar

Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

Article CAS PubMed PubMed Central Google Scholar

Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

Article CAS PubMed Google Scholar

Elvers, K. T. et al. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open 10, e035677 (2020).

Article PubMed PubMed Central Google Scholar

Zimmermann, P. & Curtis, N. The effect of antibiotics on the composition of the intestinal microbiota — a systematic review. J. Infect. 79, 471–489 (2019).

Article PubMed Google Scholar

Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. North. Am. 23, 791–815 (2009).

Article PubMed PubMed Central Google Scholar

Levy, R. M., Huang, E. Y., Roling, D., Leyden, J. J. & Margolis, D. J. Effect of antibiotics on the oropharyngeal flora in patients with acne. Arch. Dermatol. 139, 467–471 (2003).

Article CAS PubMed Google Scholar

Kim, S., Covington, A. & Pamer, E. G. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279, 90–105 (2017).

Article CAS PubMed PubMed Central Google Scholar

Kelly, S. A. et al. Antibiotic therapy and the gut microbiome: investigating the effect of delivery route on gut pathogens. ACS Infect. Dis. 7, 1283–1296 (2021).

Article CAS PubMed Google Scholar

Zhang, L., Huang, Y., Zhou, Y., Buckley, T. & Wang, H. H. Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob. Agents Chemother. 57, 3659–3666 (2013). A comparison of oral and intravenous antibiotic administration on the spread of antibiotic resistance in the mouse intestine.

Article CAS PubMed PubMed Central Google Scholar

Finegold, S. M. Anaerobic infections in humans: an overview. Anaerobe 1, 3–9 (1995).

Article CAS PubMed Google Scholar

Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

Article PubMed PubMed Central Google Scholar

Donskey, C. J. et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 343, 1925–1932 (2000). This study of patients colonized with vancomycin-resistant enterococci showed overgrowth in the intestine during treatment with various anti-anaerobic antibiotics.

Article CAS PubMed PubMed Central Google Scholar

Brook, I., Wexler, H. M. & Goldstein, E. J. C. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin. Microbiol. Rev. 26, 526–546 (2013).

Article CAS PubMed PubMed Central Google Scholar

Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012). Intestinal domination by various bacteria is associated with subsequent bacteraemia in patients undergoing haematopoietic stem cell transplantation.

Article CAS PubMed PubMed Central Google Scholar

Young, V. B. & Schmidt, T. M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42, 1203–1206 (2004).

Article PubMed PubMed Central Google Scholar

Wiström, J. et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J. Antimicrob. Chemother. 47, 43–50 (2001).

Article PubMed Google Scholar

Ma, H. et al. Combined administration of antibiotics increases the incidence of antibiotic-associated diarrhea in critically ill patients. Infect. Drug. Resist. 12, 1047–1054 (2019).

Article CAS PubMed PubMed Central Google Scholar

Rashidi, A. et al. Gut microbiota response to antibiotics is personalized and depends on baseline microbiota. Microbiome 9, 211 (2021).

Article PubMed PubMed Central Google Scholar

Arvidsson, A., Leijd, B., Nord, C. E. & Angelin, B. Interindividual variability in biliary excretion of ceftriaxone: effects on biliary lipid metabolism and on intestinal microflora. Eur. J. Clin. Invest. 18, 261–266 (1988).

Article CAS PubMed Google Scholar

Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

Article CAS PubMed Google Scholar

Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

Article PubMed PubMed Central Google Scholar

Anthony, W. E. et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 39, 110649 (2022). This study shows short- and long-term effects of antibiotics on the gut microbiota of healthy volunteers.

Article CAS PubMed PubMed Central Google Scholar

Yee, A. L. et al. Longitudinal microbiome composition and stability correlate with increased weight and length of very-low-birth-weight infants. mSystems 4, e00229-18 (2019).

Article PubMed PubMed Central Google Scholar

Sorg, R. A. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 14, e2000631 (2016).

Article PubMed PubMed Central Google Scholar

Cubillos-Ruiz, A. et al. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng. 6, 910–921 (2022).

Article CAS PubMed Google Scholar

Sun, J. et al. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat. Commun. 11, 1427 (2020).

Article CAS PubMed PubMed Central Google Scholar

Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

Article CAS PubMed PubMed Central Google Scholar

Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136.e8 (2016).

Article CAS PubMed PubMed Central Google Scholar

Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

Article CAS PubMed PubMed Central Google Scholar

Montandon, S. A. & Jornayvaz, F. R. Effects of antidiabetic drugs on gut microbiota composition. Genes 8, 250 (2017).

Article PubMed PubMed Central Google Scholar

Le Bastard, Q. et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ther. 47, 332–345 (2018).

Article PubMed Google Scholar

Kwok, C. S. et al. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am. J. Gastroenterol. 107, 1011–1019 (2012).

Article CAS PubMed Google Scholar

Trifan, A. et al. Proton pump inhibitors therapy and risk of Clostridium difficile infection: systematic review and meta-analysis. World J. Gastroenterol. 23, 6500–6515 (2017).

Article CAS PubMed PubMed Central Google Scholar

Caballero-Flores, G., Pickard, J. M., Fukuda, S., Inohara, N. & Núñez, G. An enteric pathogen subverts colonization resistance by evading competition for amino acids in the gut. Cell Host Microbe 28, 526–533.e5 (2020).

Article CAS PubMed PubMed Central Google Scholar

Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

Article PubMed Google Scholar

Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

Article CAS PubMed PubMed Central Google Scholar

Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

Article CAS PubMed PubMed Central Google Scholar

Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

Article CAS PubMed PubMed Central Google Scholar

Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530 (2014).

Article CAS PubMed PubMed Central Google Scholar

Pamer, E. G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352, 535–538 (2016).

Article CAS PubMed PubMed Central Google Scholar

Freter, R. The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora. J. Infect. Dis. 97, 57–65 (1955). An early study identifying the protection against infection conferred by an intact microbiota.

Article CAS PubMed Google Scholar

Miller, C. P., Bohnhoff, M. & Rifkind, D. The effect of an antibiotic on the susceptibility of the mouse’s intestinal tract to Salmonella infection. Trans. Am. Clin. Climatol. Assoc. 68, 51–58 (1957).

CAS PubMed Central Google Scholar

Sekirov, I. et al. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect. Immun. 76, 4726–4736 (2008).

Article CAS PubMed PubMed Central Google Scholar

Hensgens, M. P. M., Goorhuis, A., Dekkers, O. M. & Kuijper, E. J. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J. Antimicrob. Chemother. 67, 742–748 (2012). A multicenter case–control study to determine the period at risk for CDI after cessation of antibiotics.

Article CAS PubMed Google Scholar

Tvede, M. & Rask-Madsen, J. Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet 333, 1156–1160 (1989).

Article Google Scholar

van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

Article PubMed Google Scholar

Buffie, C. G. et al. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015). Bile-acid-mediated colonization resistance against C. difficile could be restored by the human gut commensal C. scindens.

Article CAS PubMed Google Scholar

Aguirre, A. M. et al. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog. 17, e1010015 (2021).

Article CAS PubMed PubMed Central Google Scholar

Gregory, A. L., Pensinger, D. A. & Hryckowian, A. J. A short chain fatty acid-centric view of Clostridioides difficile pathogenesis. PLoS Pathog. 17, e1009959 (2021).

Article CAS PubMed PubMed Central Google Scholar

Iwata, K. et al. A systematic review for pursuing the presence of antibiotic associated enterocolitis caused by methicillin resistant Staphylococcus aureus. BMC Infect. Dis. 14, 247 (2014).

Article PubMed PubMed Central Google Scholar

Lane, A. B., Copeland, N. K., Onmus-Leone, F. & Lawler, J. V. Methicillin-resistant Staphylococcus aureus as a probable cause of antibiotic-associated enterocolitis. Case Rep. Infect. Dis. 2018, e3106305 (2018).

Google Scholar

Lichtman, J. S. et al. Host–microbiota interactions in the pathogenesis of antibiotic-associated diseases. Cell Rep. 14, 1049–1061 (2016).

Article CAS PubMed PubMed Central Google Scholar

Pavia, A. T. et al. Epidemiologic evidence that prior antimicrobial exposure decreases resistance to infection by antimicrobial-sensitive Salmonella. J. Infect. Dis. 161, 255–260 (1990).

Article CAS PubMed Google Scholar

Holmberg, S. D., Osterholm, M. T., Senger, K. A. & Cohen, M. L. Drug-resistant Salmonella from animals fed antimicrobials. N. Engl. J. Med. 311, 617–622 (1984).

Article CAS PubMed Google Scholar

Gradel, K. O., Dethlefsen, C., Ejlertsen, T., Schønheyder, H. C. & Nielsen, H. Increased prescription rate of antibiotics prior to non-typhoid Salmonella infections: a one-year nested case–control study. Scand. J. Infect. Dis. 40, 635–641 (2008).

Article PubMed Google Scholar

Doorduyn, Y., Van Den Brandhof, W. E., Van Duynhoven, Y. T. H. P., Wannet, W. J. B. & Van Pelt, W. Risk factors for Salmonella Enteritidis and Typhimurium (DT104 and non-DT104) infections in The Netherlands: predominant roles for raw eggs in Enteritidis and sandboxes in Typhimurium infections. Epidemiol. Infect. 134, 617–626 (2006).

Article CAS PubMed Google Scholar

Malik, U. et al. Association between prior antibiotic therapy and subsequent risk of community-acquired infections: a systematic review. J. Antimicrob. Chemother. 73, 287–296 (2018).

Article CAS PubMed Google Scholar

Humphreys, H. et al. Four country healthcare associated infection prevalence survey 2006: risk factor analysis. J. Hosp. Infect. 69, 249–257 (2008).

Article CAS PubMed Google Scholar

Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota–host interactions. Nature 553, 427–436 (2018).

Article CAS PubMed PubMed Central Google Scholar

Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

Article PubMed PubMed Central Google Scholar

Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

Article CAS PubMed Google Scholar

Belkaid, Y. & Segre, J. A. Dialogue between skin microbiota and immunity. Science 346, 954–959 (2014).

Article CAS PubMed Google Scholar

Liu, Q. et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production. Cell Host Microbe 27, 68–78.e5 (2020).

Article CAS PubMed Google Scholar

Man, W. H., de Steenhuijsen Piters, W. A. A. & Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15, 259–270 (2017).

Article CAS PubMed PubMed Central Google Scholar

Clark, S. E. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr. Opin. Immunol. 66, 42–49 (2020).

Article CAS PubMed PubMed Central Google Scholar

Santagati, M., Scillato, M., Patanè, F., Aiello, C. & Stefani, S. Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunol. Med. Microbiol. 65, 23–31 (2012).

Article CAS PubMed Google Scholar

Horn, K. J. et al. Corynebacterium species inhibit Streptococcus pneumoniae colonization and infection of the mouse airway. Front. Microbiol. 12, 804935 (2021).

Article PubMed Google Scholar

Thackray, L. B. et al. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Rep. 22, 3440–3453.e6 (2018).

Article CAS PubMed PubMed Central Google Scholar

Margolis, D. J., Bowe, W. P., Hoffstad, O. & Berlin, J. A. Antibiotic treatment of acne may be associated with upper respiratory tract infections. Arch. Dermatol. 141, 1132–1136 (2005).

Article CAS PubMed Google Scholar

Smith, H. S. et al. Antecedent antimicrobial use increases the risk of uncomplicated cystitis in young women. Clin. Infect. Dis. 25, 63–68 (1997).

Article CAS PubMed Google Scholar

Robinson, C. J. & Young, V. B. Antibiotic administration alters the community structure of the gastrointestinal micobiota. Gut Microbes 1, 279–284 (2010).

Article PubMed PubMed Central Google Scholar

Zacharioudakis, I. M., Zervou, F. N., Pliakos, E. E., Ziakas, P. D. & Mylonakis, E. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis. Am. J. Gastroenterol. 110, 381–390 (2015).

Article PubMed Google Scholar

Stevens, E. J., Bates, K. A. & King, K. C. Host microbiota can facilitate pathogen infection. PLoS Pathog. 17, e1009514 (2021).

Article CAS PubMed PubMed Central Google Scholar

Kluytmans-van den Bergh, M. F. Q. et al. Rectal carriage of extended-spectrum-β-lactamase-producing enterobacteriaceae in hospitalized patients: selective preenrichment increases yield of screening. J. Clin. Microbiol. 53, 2709–2712 (2015).

Article CAS PubMed PubMed Central Google Scholar

Sheppard, S. K. Strain wars and the evolution of opportunistic pathogens. Curr. Opin. Microbiol. 67, 102138 (2022).

Article CAS PubMed Google Scholar

Donskey, C. J. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin. Infect. Dis. 39, 219–226 (2004).

Article PubMed Google Scholar

Sim, C. K. et al. A mouse model of occult intestinal colonization demonstrating antibiotic-induced outgrowth of carbapenem-resistant Enterobacteriaceae. Microbiome 10, 43 (2022). Mice colonized with resistant bacteria at undetectable levels showed overgrowth following antibiotic treatment.

Article CAS PubMed PubMed Central Google Scholar

Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

Article CAS PubMed PubMed Central Google Scholar

Bottery, M. J. et al. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J. 16, 812–821 (2022).

Article CAS PubMed Google Scholar

Tavernier, S. et al. Community composition determines activity of antibiotics against multispecies biofilms. Antimicrob. Agents Chemother. 61, e00302–e00317 (2017).

Article CAS PubMed PubMed Central Google Scholar

Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

Article PubMed Google Scholar

Mayer, F. L., Wilson, D. & Hube, B. Candida albicans pathogenicity mechanisms. Virulence 4, 119–128 (2013).

Article PubMed PubMed Central Google Scholar

Xu, J. et al. Effect of antibiotics on vulvovaginal candidiasis: a MetroNet study. J. Am. Board. Fam. Med. 21, 261–268 (2008).

Article PubMed Google Scholar

MacDonald, T. M. et al. The risks of symptomatic vaginal candidiasis after oral antibiotic therapy. Q. J. Med. 86, 419–424 (1993).

CAS PubMed Google Scholar

Tan, C. T., Xu, X., Qiao, Y. & Wang, Y. A peptidoglycan storm caused by β-lactam antibiotic’s action on host microbiota drives Candida albicans infection. Nat. Commun. 12, 2560 (2021).

Article CAS PubMed PubMed Central Google Scholar

Seelig, M. S. The role of antibiotics in the pathogenesis of Candida infections. Am. J. Med. 40, 887–917 (1966).

Article CAS PubMed Google Scholar

Takahashi, S. et al. Septic pulmonary embolism caused by Candida albicans after treatment for urinary multidrug-resistant Pseudomonas aeruginosa. J. Infect. Chemother. 14, 436–438 (2008).

Article PubMed Google Scholar

Zhai, B. et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat. Med. 26, 59–64 (2020).

Article CAS PubMed PubMed Central Google Scholar

Samonis, G. et al. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrob. Agents Chemother. 37, 51–53 (1993).

Article CAS PubMed PubMed Central Google Scholar

Spigaglia, P., Mastrantonio, P. & Barbanti, F. in Updates on Clostridium difficile in Europe: Advances in Microbiology, Infectious Diseases and Public Health Volume 8 (eds Mastrantonio, P. & Rupnik, M.) 137–159 (Springer International, 2018). https://doi.org/10.1007/978-3-319-72799-8_9.

Toth, M., Stewart, N. K., Smith, C. & Vakulenko, S. B. Intrinsic class D β-lactamases of Clostridium difficile. mBio 9, e01803–e01818 (2018).

Article PubMed PubMed Central Google Scholar

Eyre, D. W. et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N. Engl. J. Med. 369, 1195–1205 (2013). A study showing that many C. difficile infections are not the result of transmission chains in hospital settings.

Article CAS PubMed Google Scholar

Ayres, J. S., Trinidad, N. J. & Vance, R. E. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 18, 799–806 (2012).

Article CAS PubMed PubMed Central Google Scholar

Segura Munoz, R. R. et al. Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes. ISME J. 16, 1594–1604 (2022).

Article PubMed PubMed Central Google Scholar

Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

Article CAS PubMed Google Scholar

Lentsch, V. et al. Combined oral vaccination with niche competition can generate sterilizing immunity against enteropathogenic bacteria. Preprint at bioRxiv https://doi.org/10.1101/2022.07.20.498444 (2022).

Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

Article CAS PubMed PubMed Central Google Scholar

Murray, B. E., Rensimer, E. R. & Dupont, H. L. Emergence of high-level trimethoprim resistance in fecal Escherichia coli during oral administration of trimethoprim or trimethoprim–sulfamethoxazole. N. Engl. J. Med. 306, 130–135 (1982).

Article CAS PubMed Google Scholar

Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

Article CAS PubMed Google Scholar

Vollaard, E. J., Clasener, H. A. L., van Griethuysen, A. J. A., Janssen, A. J. & Sanders-Reijmers, A. J. Influence of amoxycillin, erythromycin and roxithromycin on colonization resistance and on appearance of secondary colonization in healthy volunteers. J. Antimicrob. Chemother. 20, 131–138 (1987).

Article CAS PubMed Google Scholar

Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

Article CAS PubMed PubMed Central Google Scholar

Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120, 4332–4341 (2010). This study showed how VRE overgrow in the intestine during antibiotic treatment.

Article CAS PubMed PubMed Central Google Scholar

Soares, F. S. et al. Antibiotic-induced pathobiont dissemination accelerates mortality in severe experimental pancreatitis. Front. Immunol. 8, 1890 (2017).

Article PubMed PubMed Central Google Scholar

Drummond, R. A. et al. Long-term antibiotic exposure promotes mortality after systemic fungal infection by driving lymphocyte dysfunction and systemic escape of commensal bacteria. Cell Host Microbe 30, 1020–1033.e6 (2022).

Article CAS PubMed PubMed Central Google Scholar

Knoop, K. A., McDonald, K. G., Kulkarni, D. H. & Newberry, R. D. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 65, 1100–1109 (2016).

Article CAS PubMed Google Scholar

Forde, B. M. et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat. Commun. 10, 3643 (2019).

Article PubMed PubMed Central Google Scholar

Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

Article CAS PubMed PubMed Central Google Scholar

Wheatley, R. M. et al. Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient. Nat. Commun. 13, 6523 (2022).

Article PubMed PubMed Central Google Scholar

Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009).

Article CAS PubMed PubMed Central Google Scholar

Magill, S. S. et al. Prevalence of antimicrobial use in US acute care hospitals, May–September 2011. J. Am. Med. Asssoc. 312, 1438–1446 (2014).

Article CAS Google Scholar

Stracy, M. et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 375, 889–894 (2022). Personalized antibiotic recommendations could reduce the emergence of resistance during antibiotic treatment.

Article CAS PubMed PubMed Central Google Scholar

Caballero, J. D. et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 14, 4083 (2023).

Article Google Scholar

Tchesnokova, V. L. et al. Pandemic uropathogenic fluoroquinolone-resistant Escherichia coli have enhanced ability to persist in the gut and cause bacteriuria in healthy women. Clin. Infect. Dis. 70, 937–939 (2020).

Article PubMed Google Scholar

von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 344, 11–16 (2001).

Article Google Scholar

Gasparrini, A. J. et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 4, 2285–2297 (2019).

Article PubMed PubMed Central Google Scholar

Korpela, K. et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 7, 10410 (2016).

Article CAS PubMed PubMed Central Google Scholar

Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiol. Read. Engl. 156, 3216–3223 (2010).

Article CAS Google Scholar

Wenzler, E., Mulugeta, S. G. & Danziger, L. H. The antimicrobial stewardship approach to combating Clostridium difficile. Antibiotics 4, 198–215 (2015).

Article CAS PubMed PubMed Central Google Scholar

Baur, D. et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infect. Dis. 17, 990–1001 (2017).

Article PubMed Google Scholar

Aldeyab, M. A. et al. An evaluation of the impact of antibiotic stewardship on reducing the use of high-risk antibiotics and its effect on the incidence of Clostridium difficile infection in hospital settings. J. Antimicrob. Chemother. 67, 2988–2996 (2012).

Article CAS PubMed Google Scholar

Wiesch, P. A., zur, Kouyos, R., Abel, S., Viechtbauer, W. & Bonhoeffer, S. Cycling empirical antibiotic therapy in hospitals: meta-analysis and models. PLoS Pathog. 10, e1004225 (2014).

Article Google Scholar

Moser, C. et al. Antibiotic therapy as personalized medicine — general considerations and complicating factors. APMIS 127, 361–371 (2019).

Article PubMed Google Scholar

Yeh, Y.-C., Huang, T.-H., Yang, S.-C., Chen, C.-C. & Fang, J.-Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front. Chem. 8, 286 (2020).

Article CAS PubMed PubMed Central Google Scholar

Wang, Y. et al. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J. Nanobiotechnol. 17, 103 (2019).

Article Google Scholar

Yao, J. et al. A pathogen-selective antibiotic minimizes disturbance to the microbiome. Antimicrob. Agents Chemother. 60, 4264–4273 (2016).

Article CAS PubMed PubMed Central Google Scholar

Mu, H. et al. Pathogen-targeting glycovesicles as a therapy for salmonellosis. Nat. Commun. 10, 4039 (2019).

Article PubMed PubMed Central Google Scholar

Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018).

Article CAS PubMed PubMed Central Google Scholar

Gutiérrez, B. & Domingo-Calap, P. Phage therapy in gastrointestinal diseases. Microorganisms 8, 1420 (2020).

Article PubMed PubMed Central Google Scholar

Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins — a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2013).

Article CAS PubMed Google Scholar

Meade, E., Slattery, M. A. & Garvey, M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics 9, 32 (2020).

Article CAS PubMed PubMed Central Google Scholar

Hatfull, G. F., Dedrick, R. M. & Schooley, R. T. Phage therapy for antibiotic-resistant bacterial infections. Annu. Rev. Med. 73, 197–211 (2022).

Article PubMed Google Scholar

Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

Article CAS PubMed PubMed Central Google Scholar

Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).

Article PubMed PubMed Central Google Scholar

Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

Article CAS PubMed PubMed Central Google Scholar

McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, 987–994 (2018).

Article CAS PubMed Google Scholar

Yelin, I. et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat. Med. 25, 1728–1732 (2019).

Article CAS PubMed PubMed Central Google Scholar

Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

Article CAS PubMed Google Scholar

Imperial, I. C. V. J. & Ibana, J. A. Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front. Microbiol. 7, 1983 (2016).

Article PubMed PubMed Central Google Scholar

Kassam, Z., Lee, C. H., Yuan, Y. & Hunt, R. H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108, 500 (2013).

Article PubMed Google Scholar

Pamer, E. G. Fecal microbiota transplantation: effectiveness, complexities, and lingering concerns. Mucosal Immunol. 7, 210–214 (2014).

Article CAS PubMed Google Scholar

Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018).

Article PubMed PubMed Central Google Scholar

DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

Article PubMed Google Scholar

Amrane, S. & Lagier, J.-C. Fecal microbiota transplantation for antibiotic resistant bacteria decolonization. Hum. Microbiome J. 16, 100071 (2020). A comprehensive overview of the application of FMT to decolonize the gut of antibiotic resistance bacteria.

Article Google Scholar

Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).

Article CAS PubMed Google Scholar

Stecher, B. & Hardt, W.-D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 14, 82–91 (2011).

Article CAS PubMed Google Scholar

Pickard, J. M. & Núñez, G. Pathogen colonization resistance in the gut and its manipulation for improved health. Am. J. Pathol. 189, 1300–1310 (2019).

Article PubMed PubMed Central Google Scholar

Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

Article CAS PubMed PubMed Central Google Scholar

Brunet, Y. R., Espinosa, L., Harchouni, S., Mignot, T. & Cascales, E. Imaging type VI secretion-mediated bacterial killing. Cell Rep. 3, 36–41 (2013).

Article CAS PubMed Google Scholar

Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).

Article CAS PubMed Google Scholar

Vital, M., Rud, T., Rath, S., Pieper, D. H. & Schlüter, D. Diversity of bacteria exhibiting bile acid-inducible 7α-dehydroxylation genes in the human gut. Comput. Struct. Biotechnol. J. 17, 1016–1019 (2019).

Article CAS PubMed PubMed Central Google Scholar

Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14, 150–162 (2016).

Article CAS PubMed PubMed Central Google Scholar

Ikuta, K. S. et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248 (2022).

Article Google Scholar

Magruder, M. et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 10, 5521 (2019).

Article CAS PubMed PubMed Central Google Scholar

Download references

This research was funded by Wellcome Trust grant 224212/Z/21/Z.

Sir William Dunn School of Pathology, University of Oxford, Oxford, UK

Laura de Nies, Carolin M. Kobras & Mathew Stracy

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

All authors researched data for the article. L.d.N. and M.S. contributed substantially to discussion of the content. L.d.N. and M.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Correspondence to Mathew Stracy.

The authors declare no competing interests.

Nature Reviews Microbiology thanks Simone Becattini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

de Nies, L., Kobras, C.M. & Stracy, M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol (2023). https://doi.org/10.1038/s41579-023-00936-9

Download citation

Accepted: 28 June 2023

Published: 04 August 2023

DOI: https://doi.org/10.1038/s41579-023-00936-9

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative